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1 Introduction to the Fourier Transform

1.1 Motivation: diagonalization for differential operators

We would like to have a better way to think about fundamental solutions to PDEs. Here
is an analogy for the Fourier transform. Suppsoe we have a symmetric matrix in R”.
Then A is diagonalizable, with orthonormal eigenvectors uq,...,u,. If you want to better
represent your matrix, you can change coordinates to this basis, or you can express an
arbitrary vector with u = ciuy + - - - cup, where ¢j = w - u;. If you have two (or a family
of) commuting matrices, you can find an orthonormal basis of eigenvectors for both (or
all) matrices simultaneously.

If we have PDEs with constant coefficients, then the operators P(9),Q(0),... are all
commuting operators. Can we find a common eigenbasis of functions? Here are some
candidates for eigenfunctions ¢, where the i is there to make sure that these don’t blow

up at co. Then ‘ A
P(9)e™€ = P(if)e,

so these exponentials naively serve as eigenfunctions for these operators with eigenvalues
P(i). Here, we don’t always have real eigenvalues, but we have complex eigenvalues.
Here are some issues:

e Are these functions orthogonal? Consider the Hilbert space L?(R") = {u: R" = R |
Jgn [u?dz < oo. If we consider the L*(R") inner product, u - v = [p, u(z)v(z) dw
(with v replaced by T for complex functions), are these orthonormal? In fact, ¢ ¢
L?, so we cannot properly analyze

/ PSR

e For our diagonaiization, we have uncountably many eigenvectors. L?(R") is a sep-
arable Hilbert space with a countable orthonormal basis. So we have too many
functions.



However, we can think of ¢ as generalized eigenfunctions. We can still ask the
question: Given f € L?(R"), can we write it as a superposition as ¢*¢? That is, can we
write

fa) = / e e(€) de?

If we disregard the above issues, can we still recover an identity like ¢; = u - u; as before?
We may want to try

() = [ £ e

But since we have trouble normalizing the eigenfunctions, should there be a normalization
constant in front?
If we can achieve such a representation, then we get a lot out of it:

P@)f = [ e Plie) .
So the map f +— P(0)f just acts diagonally on this basis: ¢(§) — P(i&) - ¢(&).

1.2 Properties of the Fourier transform

We will use the notation D; = 19;, so that D;je™* = £;e™¢. So we will think of P(D)
instead of P(9). In this notation, P(D)e'™¢ = P(£)e®<, and we call P(¢) the symbol of
P.

Example 1.1. If P(x,D) =)  co(x)D?*, then the symbol is P(x,§) =), ca(x)E°.
Definition 1.1. The Fourier transform of a function f is
FINEO =T = s [ oS e
Our goal is to show that
1 iz 7
W /]Rn e f(€) de.

For what f is fwell—deﬁned? The integral is absolutely convergent if f € L', i.e. [ |f| < occ.
We will not use L' functions much in our context. If we have f € L!, then

flz) =

~ 1

IfE)] < Wllfllu,

which we can write as 1
Il < Gl
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The problem is that we want to be able to undo the Fourier transform, and for L*° functions,
the Fourier transform is not well-defined.

What about the Fourier transform on test functions? If f € D, then f € &, so there
is no compact support. But if we have f € &, then f does not exist, since the integral
may not converge. It seems that D is too small, and £ is too large. What should be our
intermediate space where F acts? We will use the Schwartz space S.! For u € S, we want
the derivatives to not only be bounded but have decay at infinity.

Definition 1.2. The Schwartz space is the space of C°°(R") functions which are rapidly
decreasing, in the sense that
|2%9Pu| < Ca,B

for all o, 8 € N™.
The Schwartz space S is a locally convex space with seminorms
Pas(u) = [|2°0%u| L.
Theorem 1.1. The Fourier transform is F : S — S, and the inverse F~1:S = S.

We have not proven that (F~1f)(¢) = 27r s Jan €76 f dx gives the inverse, but we will
call it the inverse for now. How do we prove thls theorem?

Observe that in the expression z*9?, the order of @ and 9° does not matter. How do
0, x interact with the Fourier transform?

Proposition 1.1. For f € S, 8jf: —w?j?

Proof.
~ 1 .
076 = Goiars [ ¢S @) (i) o
= —ix, . 0

Proposition 1.2. For f € S, £f = —i@.
Proof.

1

fjf(f) = W/emff(l’)gj dx

Use integration by parts.

1
—sz dr
277)” /8;133 (@)
1

= (277)"/2/ —i(e®) f(z) d. O

!This is not the same as Schwarz from the Cauchy-Schwarz inequality. Professor Tataru got to meet
Schwartz once.




So multiplication by x on the physical side is differentiation on the Fourier side, and
multiplication by £ on the Fourier side is differentiation on the physical side.

Proof. If f € S, then (using f =0 and || < N for N > n)

|f(z)] < O_:W cL'.

So [[fllze < el fllLr-
Together, our propositions give us

£20f F = (i) "1919g 7.

Here, we have R
1£0¢ Fllze < [1092° fll 1.

If f €8, then 9%2°f € S C L'. So the right hand side is finite, controlled by finitely many
of our Schwartz seminorms. O

Example 1.2 (Fourier transform of a Gaussian). Suppose f(z) = e~*/2_ What is ]??

Fi&) = e 2e i

_ L e / o (@22 g

How do we deal with this integral? If we write z = x = i£, we are doing a complex integral
on the curve I'g:

So we get

N _ 1 —22/2
fi©) = oy /Fge az

— 2 1 / e * 12 dy
o

(zﬂ)n/Z

__—£2)2 1 —x2/2
=e /(27T)n/2/n€ /2 dx
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We can recall | e do = /7, so a change of variables gives
— /2
=e .

So we have seen that
J:(e_xg/Q) — e ¢/2,

In general, what is F (e_)‘x2/ 2)? Here is how the Fourier transform behaves under
scaling:

Proposition 1.3. For f € S,

— 1 ~

Fw) =51 C/w),
Proof.

Ff(ux) = / e f(px) da
Make the change of variables y = ux.

- / e W f(y) dy
n

- Mlnf(g/u). 0

Remark 1.1. You might call f(ux) an L scaling, whereas /%nf(f/,u) is an L' scaling.

Example 1.3. Setting u = v/,

Fle*/2) = #6752/(2»

We will work towards the following Fourier inversion theorem:
Theorem 1.2. F'F=FF '=IinS§S.

Remark 1.2. You can think of FF~! as the complex conjugate of F~1F.
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