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1 Introduction to the Fourier Transform

1.1 Motivation: diagonalization for differential operators

We would like to have a better way to think about fundamental solutions to PDEs. Here
is an analogy for the Fourier transform. Suppsoe we have a symmetric matrix in Rn.
Then A is diagonalizable, with orthonormal eigenvectors u1, . . . , un. If you want to better
represent your matrix, you can change coordinates to this basis, or you can express an
arbitrary vector with u = c1u1 + · · · cnun, where cj = u · uj . If you have two (or a family
of) commuting matrices, you can find an orthonormal basis of eigenvectors for both (or
all) matrices simultaneously.

If we have PDEs with constant coefficients, then the operators P (∂), Q(∂), . . . are all
commuting operators. Can we find a common eigenbasis of functions? Here are some
candidates for eigenfunctions eix·ξ, where the i is there to make sure that these don’t blow
up at ∞. Then

P (∂)eix·ξ = P (iξ)eix·ξ,

so these exponentials naively serve as eigenfunctions for these operators with eigenvalues
P (iξ). Here, we don’t always have real eigenvalues, but we have complex eigenvalues.

Here are some issues:

• Are these functions orthogonal? Consider the Hilbert space L2(Rn) = {u : Rn → R |∫
Rn |u|

2 dx < ∞. If we consider the L2(Rn) inner product, u · v =
∫
Rn u(x)v(x) dx

(with v replaced by v for complex functions), are these orthonormal? In fact, eix·ξ /∈
L2, so we cannot properly analyze∫

Rn
eix·ξ1e−ixξ2 dx.

• For our diagonaiization, we have uncountably many eigenvectors. L2(Rn) is a sep-
arable Hilbert space with a countable orthonormal basis. So we have too many
functions.
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However, we can think of eix·ξ as generalized eigenfunctions. We can still ask the
question: Given f ∈ L2(Rn), can we write it as a superposition as eix·ξ? That is, can we
write

f(x) =

∫
eix·ξc(ξ) dξ?

If we disregard the above issues, can we still recover an identity like cj = u · uj as before?
We may want to try

c(ξ) =

∫
f(x)e−ixξ dx.

But since we have trouble normalizing the eigenfunctions, should there be a normalization
constant in front?

If we can achieve such a representation, then we get a lot out of it:

P (∂)f =

∫
eix·ξc(ξ)P (iξ) dξ.

So the map f 7→ P (∂)f just acts diagonally on this basis: c(ξ) 7→ P (iξ) · c(ξ).

1.2 Properties of the Fourier transform

We will use the notation Dj = 1
i ∂j , so that Dje

ix·ξ = ξje
ix·ξ. So we will think of P (D)

instead of P (∂). In this notation, P (D)eix·ξ = P (ξ)eix·ξ, and we call P (ξ) the symbol of
P .

Example 1.1. If P (x,D) =
∑

α cα(x)Dα, then the symbol is P (x, ξ) =
∑

α cα(x)ξα.

Definition 1.1. The Fourier transform of a function f is

(Ff)(ξ) = f̂(ξ) =
1

(2π)n/2

∫
Rn
e−ix·ξf(x) dx.

Our goal is to show that

f(x) =
1

(2π)n/2

∫
Rn
eix·ξ f̂(ξ) dξ.

For what f is f̂ well-defined? The integral is absolutely convergent if f ∈ L1, i.e.
∫
|f | <∞.

We will not use L1 functions much in our context. If we have f ∈ L1, then

|f̂(ξ)| ≤ 1

(2π)n/2
‖f‖L1 ,

which we can write as

‖f̂‖L∞ ≤ 1

(2pi)n/2
‖f‖L1 .
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The problem is that we want to be able to undo the Fourier transform, and for L∞ functions,
the Fourier transform is not well-defined.

What about the Fourier transform on test functions? If f ∈ D, then f̂ ∈ E , so there
is no compact support. But if we have f ∈ E , then f̂ does not exist, since the integral
may not converge. It seems that D is too small, and E is too large. What should be our
intermediate space where F acts? We will use the Schwartz space S.1 For u ∈ S, we want
the derivatives to not only be bounded but have decay at infinity.

Definition 1.2. The Schwartz space is the space of C∞(Rn) functions which are rapidly
decreasing, in the sense that

|xα∂βu| ≤ cα,β
for all α, β ∈ Nn.

The Schwartz space S is a locally convex space with seminorms

pα,β(u) = ‖xα∂βu‖L∞ .

Theorem 1.1. The Fourier transform is F : S → S, and the inverse F−1 : S → S.

We have not proven that (F−1f)(ξ) = 1
(2π)n/2

∫
Rn e

ix·ξ f̂ dx gives the inverse, but we will

call it the inverse for now. How do we prove this theorem?
Observe that in the expression xα∂β, the order of xα and ∂β does not matter. How do

∂, x interact with the Fourier transform?

Proposition 1.1. For f ∈ S, ∂j f̂ = −ix̂jf .

Proof.

∂j f̂(ξ) =
1

(2π)n/2

∫
e−ix·ξf(x)(−ixj) dx

= −ix̂jf.

Proposition 1.2. For f ∈ S, ξf̂ = −i∂̂xf .

Proof.

ξj f̂(ξ) =
1

(2π)n/2

∫
e−ix·ξf(x)ξj dx

Use integration by parts.

=
1

(2π)n/2

∫
i
∂

∂xj
(e−ix·ξ)f(x) dx

=
1

(2π)n/2

∫
−i(e−ix·ξ)f(x) dx.

1This is not the same as Schwarz from the Cauchy-Schwarz inequality. Professor Tataru got to meet
Schwartz once.
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So multiplication by x on the physical side is differentiation on the Fourier side, and
multiplication by ξ on the Fourier side is differentiation on the physical side.

Proof. If f ∈ S, then (using β = 0 and |α| ≤ N for N > n)

|f(x)| ≤ cN
(1 + |x|)N

∈ L1.

So ‖f̂‖L∞ ≤ c‖f‖L1 .
Together, our propositions give us

ξα∂βξ f̂ = (−i)|α|+|β|∂̂αxxβf.

Here, we have
‖fα∂βξ f̂‖L∞ ≤ ‖∂αxxβf‖L1 .

If f ∈ S, then ∂αxx
βf ∈ S ⊆ L1. So the right hand side is finite, controlled by finitely many

of our Schwartz seminorms.

Example 1.2 (Fourier transform of a Gaussian). Suppose f(x) = e−x
2/2. What is f̂?

f̂(ξ) =
1

(2π)n/2
e−x

2/2e−ixξ dx

=
1

(2π)n/2
e−ξ

2/2

∫
e−(x+iξ)2/2 dx

How do we deal with this integral? If we write z = x = iξ, we are doing a complex integral
on the curve Γξ:

So we get

f̂(ξ) =
1

(2π)n/2

∫
Γξ

e−z
2/2 dz

= e−ξ
2/2 1

(2π)n/2

∫
Γ0

e−z
2/2 dz

= e−ξ
2/2 1

(2π)n/2

∫
Rn
e−x

2/2 dx

4



We can recall
∫
e−x

2
dx =

√
π, so a change of variables gives

= e−ξ
2/2.

So we have seen that
F(e−x

2/2) = e−ξ
2/2.

In general, what is F(e−λx
2/2)? Here is how the Fourier transform behaves under

scaling:

Proposition 1.3. For f ∈ S,
f̂(µ·) =

1

µn
f̂(·/µ).

Proof.

Ff(µx) =

∫
e−ix·ξf(µx) dx

Make the change of variables y = µx.

=
1

µn

∫
e−iy·ξ/µf(y) dy

=
1

µn
f̂(ξ/µ).

Remark 1.1. You might call f(µx) an L∞ scaling, whereas 1
µn f̂(ξ/µ) is an L1 scaling.

Example 1.3. Setting µ =
√
λ,

F(e−λx
2/2) =

1

λn/2
e−ξ

2/(2λ).

We will work towards the following Fourier inversion theorem:

Theorem 1.2. F−1F = FF−1 = I in S.

Remark 1.2. You can think of FF−1 as the complex conjugate of F−1F .
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